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LETTER TO THE EDITOR 

On certain local observables generated by the momenta 
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+ School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington 
Road, Dublin 4, Ireland 
t Department of Theoretical Physics, School of Physical Sciences, St Andrews University, 
North Haugh, St Andrews, Fife, UK 

Received 16 October 1980 

Abstract. We study the quantisation of certain local quantum observables defined in terms 
of a momentum and a region of a Riemannian configuration space. Geometric criteria are 
given for the quantisability of these local observables, conditions are developed under which 
a reconstruction of the corresponding global quantum momentum may be attempted, and 
explicit formulae describing such a reconstruction are given. 

In a recent paper (Wan and McFarlane 1980) we established a link between the 
geometric quantisability of a momentum P defined over a Riemannian configuration 
manifold M and certain global bounds in the accuracy of measurements of P conducted 
upon localised states within a finite region of space; momenta possessing such bounds 
were then said to be globally measurable. The key features of this analysis were the 
localisation of measurement within finite regions of the configuration space, and the 
combination of locally-derived measures to deduce global properties of the momentum 
under test. Localisation was in the case of quantum measurement achieved by a 
suitable a priori restriction of wavefunctions to those whose support was contained in 
the local region under consideration. 

There is, however, a second means whereby localisation can be introduced, and this 
without the restriction of admissible states: we may seek to define local observables 
derived from the global momenta such as need be measured only within a given volume 
of space. Intuitively we may expect such an observable to satisfy two basic desiderata : 

(i) It is, outside a certain region, identically zero, so that no apparatus external to 
that locality is required to determine its value, and 

(ii) it agrees within that certain region with a global observable from which it is 
derived. Note that the second point should not be taken too literally since a well- 
defined global quantum momentum need not generally exist. 

We shall be concerned in this Letter with the properties of such local observables 
and their relationship to the momenta from which they are derived, and shall find that 
whereas local momenta do not in general effect a means of decomposing their parent 
observables into simpler and localised objects suitable for measurement, whenever they 
exist they nevertheless define a canonical decomposition of the global momentum, and 
may, significantly, be well defined even for those classical observables for which no 
quantum counterpart exists. 

Now let A be an open subset of M which may be visualised as a small region of M 
within which we wish to conduct measurements, and let T denote the projector onto A 

0305-4470/81/010001+03$01.50 @ 1981 The Institute of Physics L1 



L2 Letter to the Editor 

whose action on an element $ of the natural Hilbert space L2(M)  is given as 

We may then introduce, at least formally, a local quantum observable defined over A 
and associated with the momentum P by the formula 

Qt (PI = rQo(P)r ,  

in which Qo(P)  denotes the usual formal quantum analogue of P (Wan and McFarlane 
1980), 

Qo(P) = - ih(X + $ div X ) ,  

defined on the domain CF(M),  in which X denotes the vector field associated with P, 
and CT ( M )  the set of infinitely differentiable functions of compact support. Clearly 
Q t ( P )  is a symmetric operator, and hence obeys our first desideratum trivially. The 
second, however, gives rise to difficulties since in general the domain D Q ( P )  of any 
self-adjoint extension of Qo(P) may not contain DQA(P) ,  the domain of any self- 
adjoint extension of Q t ( P ) ,  so that a state I+!I possessing the global quantum attribute 
Q ( P )  may possess no local attribute Q A ( P )  at all! Furthermore Q t ( P )  may possess no 
self-adjoint extension, and examples may easily be constructed to demonstrate this. 

Resuming our discussion, let us consider, for the case of the complete momenta (that 
is momenta associated with complete vector fields) the source of the difficulties with our 
second desideratum. For such momenta there exists a unique self-adjoint extension 

Q ( P )  = - ih(Dx + 3 div X ) ,  

having the domain of definition 

DQ(P)  = {$ E L2(M)lI+!I E C'W, M ) ,  Q(P)I+!I E L2(M)) ,  

in which Dx denotes the Lie derivative with respect to the field X ,  and C'(X,  M )  the set 
of functions I+!I for which D& exists (Wan and McFarlane 1980). Observe that &(P) 
has the symmetric extension r Q ( P ) r  and that, provided r$ E C' (X,  M ) ,  Q(P)$  E 
L2(M)  j r Q ( P ) r $  E L2(M) ,  so that we are led to suspect that the problem with the 
second desideratum stems from the failure of the domain constraint rrC, E C' (X,  M )  
even when $ E  C1(X, M ) .  But now $ E  C'(X, M )  does not imply that r$ E C'(X, M )  
without constraint on (I, unless when, as may best be seen by geometrical visualisation, 
A is invariant under the flow of X, so that we anticipate that only those sets A which are 
invariant under the flow of X will generate satisfactory local quantum observables, a 
speculation confirmed by the following theorem: 

Theorem 1 .  On the existence of local observables. The operator Q t ( P )  is essentially 
self-adjoint if and only if the flow vl of X is complete in A, except possibly on a set of 
measure zero?, when the unique self-adjoint extension Q A ( P )  is given by 

-ih(Dx + $ div X ) $ ( x ) ,  X E A ,  
xkA, 

t By this we mean that at almost every point of A the maximal integral curve {y E Mlv , (x )  = y} has an infinite 
range of t parametrisation, and moreover vI (x )  E A, V t  E R. We may also term A invariant under the flow of 
X. Note especially that X need not be complete in M. 
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on the domain 

DQA(P)  = {Icl E L2(M)lIcl E C'W, A ) ,  QA(P)Icl E L2(M)} ,  
in which C'(X,  A )  denotes the set of functions on M whose Lie derivative with respect 
to X exists at all points of A.  

Proof. We first establish a lemma. Let no be a symmetric restriction of a symmetric 
operator R;  then R is essentially self-adjoint if Ro is essentially self-adjoint. For we 
have $30 < $ILt 0' and no < Cl whence $I; Rt, 0;'s 0'' and therefore 
RA = RA' requires Rt = 0". Next define the auxiliary operator 9," on the Hilbert space 
L2(A) by q," = -ih(X ++ div X) on the domain C?(A) of L2(A).  Treating A = M as a 
sub-manifold of M it is immediate that q," as an operator in L2(A) is essentially 
self-adjoint if and only if the conditions of the above theorem hold (Abraham and 
Marsden 1978, Wan and McFarlane 1980). Further define on L 2 ( M )  the operator 
Q," = q," @Of where @f denotes the zero operator on the orthogonal complement 
L?(A) of L2(A) regarded as a subspace of L 2 ( M )  so that L2(M)  = L2(A)@L:(A).  We 
then have (6,")' = (q,")'@Of, and hence that Q," is essentially self-adjoint if and only 
if so also is 9:. But now Q t ( P )  is a symmetric extension of Qt, and is itself symmetric 
so that by our lemma if Q f ( P )  is essentially self-adjoint then so also is Qf and hence 
the conditions on vl are satisfied. Conversely if the conditions are satisfied then Q t ( P )  

t t t t  - is essentially self-adjoint; for (Qt(P))ttsQf so that by the lemma ( Q t ( P ) )  - 
( Q t ( P ) ) t t '  or ( Q t ( P ) ) t t  = ( Q t ( P ) ) t .  Finally when the conditions of tlie theorem are 
satisfied we have that Q A ( P )  = (Q,")'= (q,")'OOf: and (q:)'= - ih(Dx+4divX)  
acting on functions of L2(A) for which the Lie derivative exists. This leads directly to 
the explicit expression for QA(P).  

Observe that although a local observable Q A ( P )  may exist even when no global 
observable Q ( P )  is defined, the existence condition for such a local observable, that the 
set A be invariant under the flow vl,  is nonztheless stringent, and for some momenta P 
no such local A may exist. At the other extreme we may have a momentum for which a 
family of vr- invariant sets A ,  may be defined such that {A, }  is a partition of M, except 
for a set of measure zero. Clearly in this case Q ( P )  is well defined, since P is complete 
almost everywhere, and can be given a decomposition in terms of the corresponding 
local observables as follows: 

$I:, R S $Itt 

Theorem 2. On the canonical decomposition of global observables. Let P admit a family 
of (almost everywhere) invariant open subsets A ,  which partition M except for a set of 
measure zero; then P is complete almost everywhere, and moreover 

Q ( P )  = 1 QA-(P). 
a 

Proof. The domain D(Z,  Q A - ( P ) )  contains # Ena C ' ( X ,  A , )  which implies that 
# E C'(X ,  M )  almost everywhere. Further, since in L 2 ( M )  we do not distinguish 
functions differing only in a set of measure zero, we have # E D ( Z ~  DQA-(P))=)4  E 

C'(X, M ) .  Now obviously V 4  E D(X, QA- ( P ) ) ,  we have Z, Q A - ( P ) 4  = Q(P)+  almost 
everywhere, and conversely V 4  E D Q ( P ) ,  so that the result follows. 
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